Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mol Metab ; 80: 101875, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218535

ABSTRACT

OBJECTIVE: We investigated the potential involvement of miRNAs in the developmental programming of cardiovascular diseases (CVD) by maternal obesity. METHODS: Serum miRNAs were measured in individuals from the Helsinki Birth Cohort (with known maternal body mass index), and a mouse model was used to determine causative effects of maternal obesity during pregnancy and ischemia-reperfusion on offspring cardiac miRNA expression and release. RESULTS: miR-15b-5p levels were increased in the sera of males born to mothers with higher BMI and in the hearts of adult mice born to obese dams. In an ex-vivo model of perfused mouse hearts, we demonstrated that cardiac tissue releases miR-15b-5p, and that some of the released miR-15b-5p was contained within small extracellular vesicles (EVs). We also demonstrated that release was higher from hearts exposed to maternal obesity following ischaemia/reperfusion. Over-expression of miR-15b-5p in vitro led to loss of outer mitochondrial membrane stability and to repressed fatty acid oxidation in cardiomyocytes. CONCLUSIONS: These findings suggest that miR-15-b could play a mechanistic role in the dysregulation of cardiac metabolism following exposure to an in utero obesogenic environment and that its release in cardiac EVs following ischaemic damage may be a novel factor contributing to inter-organ communication between the programmed heart and peripheral tissues.


Subject(s)
Cardiovascular Diseases , Extracellular Vesicles , MicroRNAs , Obesity, Maternal , Reperfusion Injury , Humans , Pregnancy , Male , Adult , Female , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Obesity, Maternal/metabolism , Reperfusion Injury/metabolism , Cardiovascular Diseases/metabolism , Extracellular Vesicles/metabolism
2.
Elife ; 112022 01 13.
Article in English | MEDLINE | ID: mdl-35025731

ABSTRACT

Maternal obesity during pregnancy has immediate and long-term detrimental effects on the offspring heart. In this study, we characterized the cardiac and circulatory lipid profiles in late gestation E18.5 fetuses of diet-induced obese pregnant mice and established the changes in lipid abundance and fetal cardiac transcriptomics. We used untargeted and targeted lipidomics and transcriptomics to define changes in the serum and cardiac lipid composition and fatty acid metabolism in male and female fetuses. From these analyses we observed: (1) maternal obesity affects the maternal and fetal serum lipidome distinctly; (2) female fetal heart lipidomes are more sensitive to maternal obesity than males; (3) changes in lipid supply might contribute to early expression of lipolytic genes in mouse hearts exposed to maternal obesity. These results highlight the existence of sexually dimorphic responses of the fetal heart to the same in utero obesogenic environment and identify lipids species that might mediate programming of cardiovascular health.


Subject(s)
Fetus/metabolism , Lipid Metabolism/physiology , Myocardium/metabolism , Obesity, Maternal/physiopathology , Animals , Female , Lipidomics , Male , Mice , Myocardium/chemistry , Pregnancy , Transcriptome/physiology
3.
Int J Obes (Lond) ; 46(2): 269-278, 2022 02.
Article in English | MEDLINE | ID: mdl-34663892

ABSTRACT

OBJECTIVE: This study investigated the effect of maternal obesity on aged-male offspring liver phenotype and hepatic expression of a programmed miRNA. METHODS: A mouse model (C57BL/6 J) of maternal diet-induced obesity was used to investigate fasting-serum metabolites, hepatic lipid content, steatosis, and relative mRNA levels (RT-PCR) and protein expression (Western blotting) of key components involved in hepatic and mitochondrial metabolism in 12-month-old offspring. We also measured hepatic lipid peroxidation, mitochondrial content, fibrosis stage, and apoptosis in the offspring. To investigate potential mechanisms leading to the observed phenotype, we also measured the expression of miR-582 (a miRNA previously implicated in liver cirrhosis) in 8-week-old and 12-month-old offspring. RESULTS: Body weight and composition was similar between 8-week-old offspring, however, 12-month-old offspring from obese mothers had increased body weight and fat mass (19.5 ± 0.8 g versus 10.4 ± 0.9 g, p < 0.001), as well as elevated serum levels of LDL and leptin and hepatic lipid content (21.4 ± 2.1 g versus 12.9 ± 1.8 g, p < 0.01). This was accompanied by steatosis, increased Bax/Bcl-2 ratio, and overexpression of p-SAPK/JNK, Tgfß1, Map3k14, and Col1a1 in the liver. Decreased levels of Bcl-2, p-AMPKα, total AMPKα and mitochondrial complexes were also observed. Maternal obesity was associated with increased hepatic miR-582-3p (p < 0.001) and miR-582-5p (p < 0.05). Age was also associated with an increase in both miR-582-3p and miR-582-5p, however, this was more pronounced in the offspring of obese dams, such that differences were greater in 12-month-old animals (-3p: 7.34 ± 1.35 versus 1.39 ± 0.50, p < 0.0001 and -5p: 4.66 ± 1.16 versus 1.63 ± 0.65, p < 0.05). CONCLUSION: Our findings demonstrate that maternal diet-induced obesity has detrimental effects on offspring body composition as well as hepatic phenotype that may be indicative of accelerated-ageing phenotype. These whole-body and cellular phenotypes were associated with age-dependent changes in expression of miRNA-582 that might contribute mechanistically to the development of metabolic disorders in the older progeny.


Subject(s)
Feeding Behavior/psychology , Liver/metabolism , Metabolic Diseases/diet therapy , Age Factors , Animals , Disease Models, Animal , Female , Gene Expression/physiology , Liver/physiopathology , Maternal Exposure/adverse effects , Maternal Exposure/statistics & numerical data , Metabolic Diseases/etiology , Mice , Mice, Inbred C57BL/metabolism , Obesity/complications , Obesity/diet therapy , RNA, Messenger
4.
Diabetologia ; 64(4): 890-902, 2021 04.
Article in English | MEDLINE | ID: mdl-33501603

ABSTRACT

AIMS/HYPOTHESIS: Levels of the microRNA (miRNA) miR-126-3p are programmed cell-autonomously in visceral adipose tissue of adult offspring born to obese female C57BL/6J mice. The spectrum of miR-126-3p targets and thus the consequences of its dysregulation for adipocyte metabolism are unknown. Therefore, the aim of the current study was to identify novel targets of miR-126-3p in vitro and then establish the outcomes of their dysregulation on adipocyte metabolism in vivo using a well-established maternal obesity mouse model. METHODS: miR-126-3p overexpression in 3T3-L1 pre-adipocytes followed by pulsed stable isotope labelling by amino acids in culture (pSILAC) was performed to identify novel targets of the miRNA. Well-established bioinformatics algorithms and luciferase assays were then employed to confirm those that were direct targets of miR-126-3p. Selected knockdown experiments were performed in vitro to define the consequences of target dysregulation. Quantitative real-time PCR, immunoblotting, histology, euglycaemic-hyperinsulinaemic clamps and glucose tolerance tests were performed to determine the phenotypic and functional outcomes of maternal programmed miR-126-3p levels in offspring adipose tissue. RESULTS: The proteomic approach confirmed the identity of known targets of miR-126-3p (including IRS-1) and identified Lunapark, an endoplasmic reticulum (ER) protein, as a novel one. We confirmed by luciferase assay that Lunapark was a direct target of miR-126-3p. Overexpression of miR-126-3p in vitro led to a reduction in Lunapark protein levels and increased Perk (also known as Eif2ak3) mRNA levels and small interference-RNA mediated knockdown of Lunapark led to increased Xbp1, spliced Xbp1, Chop (also known as Ddit3) and Perk mRNA levels and an ER stress transcriptional response in 3T3-L1 pre-adipocytes. Consistent with the results found in vitro, increased miR-126-3p expression in adipose tissue from adult mouse offspring born to obese dams was accompanied by decreased Lunapark and IRS-1 protein levels and increased markers of ER stress. At the whole-body level the animals displayed glucose intolerance. CONCLUSIONS/INTERPRETATION: Concurrently targeting IRS-1 and Lunapark, a nutritionally programmed increase in miR-126-3p causes adipose tissue insulin resistance and an ER stress response, both of which may contribute to impaired glucose tolerance. These findings provide a novel mechanism by which obesity during pregnancy leads to increased risk of type 2 diabetes in the offspring and therefore identify miR-126-3p as a potential therapeutic target.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Endoplasmic Reticulum Stress , Homeodomain Proteins/metabolism , MicroRNAs/metabolism , Obesity, Maternal/metabolism , Prenatal Exposure Delayed Effects , 3T3-L1 Cells , Adipocytes/pathology , Adipose Tissue/pathology , Animals , Blood Glucose/metabolism , Disease Models, Animal , Down-Regulation , Female , Homeodomain Proteins/genetics , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Insulin Resistance , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Obesity, Maternal/genetics , Obesity, Maternal/pathology , Phenotype , Pregnancy , Signal Transduction
5.
Int J Obes (Lond) ; 44(5): 1087-1096, 2020 05.
Article in English | MEDLINE | ID: mdl-32203108

ABSTRACT

BACKGROUND: In utero exposure to obesity is consistently associated with increased risk of metabolic disease, obesity and cardiovascular dysfunction in later life despite the divergence of birth weight outcomes. The placenta plays a critical role in offspring development and long-term health, as it mediates the crosstalk between the maternal and fetal environments. However, its phenotypic and molecular modifications in the context of maternal obesity associated with fetal growth restriction (FGR) remain poorly understood. METHODS: Using a mouse model of maternal diet-induced obesity, we investigated changes in the placental transcriptome through RNA sequencing (RNA-seq) and Ingenuity Pathway Analysis (IPA) at embryonic day (E) 19. The most differentially expressed genes (FDR < 0.05) were validated by Quantitative real-time PCR (qPCR) in male and female placentae at E19. The expression of these targets and related genes was also determined by qPCR at E13 to examine whether the observed alterations had an earlier onset at mid-gestation. Structural analyses were performed using immunofluorescent staining against Ki67 and CD31 to investigate phenotypic outcomes at both timepoints. RESULTS: RNA-seq and IPA analyses revealed differential expression of transcripts and pathway interactions related to placental vascular development and tissue morphology in obese placentae at term, including downregulation of Muc15, Cnn1, and Acta2. Pdgfb, which is implicated in labyrinthine layer development, was downregulated in obese placentae at E13. This was consistent with the morphological evidence of reduced labyrinth zone (LZ) size, as well as lower fetal weight at both timepoints irrespective of offspring sex. CONCLUSIONS: Maternal obesity results in abnormal placental LZ development and impaired vascularization, which may mediate the observed FGR through reduced transfer of nutrients across the placenta.


Subject(s)
Fetal Growth Retardation , Obesity, Maternal , Placenta , Transcriptome/genetics , Animals , Disease Models, Animal , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity, Maternal/genetics , Obesity, Maternal/metabolism , Placenta/metabolism , Placenta/pathology , Pregnancy
6.
Arterioscler Thromb Vasc Biol ; 39(11): 2289-2302, 2019 11.
Article in English | MEDLINE | ID: mdl-31434493

ABSTRACT

OBJECTIVE: Vascular inflammation underlies cardiovascular disease. Vascular smooth muscle cells (VSMCs) upregulate selective genes, including MMPs (matrix metalloproteinases) and proinflammatory cytokines upon local inflammation, which directly contribute to vascular disease and adverse clinical outcome. Identification of factors controlling VSMC responses to inflammation is therefore of considerable therapeutic importance. Here, we determine the role of Histone H3 lysine 9 di-methylation (H3K9me2), a repressive epigenetic mark that is reduced in atherosclerotic lesions, in regulating the VSMC inflammatory response. Approach and Results: We used VSMC-lineage tracing to reveal reduced H3K9me2 levels in VSMCs of arteries after injury and in atherosclerotic lesions compared with control vessels. Intriguingly, chromatin immunoprecipitation showed H3K9me2 enrichment at a subset of inflammation-responsive gene promoters, including MMP3, MMP9, MMP12, and IL6, in mouse and human VSMCs. Inhibition of G9A/GLP (G9A-like protein), the primary enzymes responsible for H3K9me2, significantly potentiated inflammation-induced gene induction in vitro and in vivo without altering NFκB (nuclear factor kappa-light-chain-enhancer of activated B cell) and MAPK (mitogen-activated protein kinase) signaling. Rather, reduced G9A/GLP activity enhanced inflammation-induced binding of transcription factors NFκB-p65 and cJUN to H3K9me2 target gene promoters MMP3 and IL6. Taken together, these results suggest that promoter-associated H3K9me2 directly attenuates the induction of target genes in response to inflammation in human VSMCs. CONCLUSIONS: This study implicates H3K9me2 in regulating the proinflammatory VSMC phenotype. Our findings suggest that reduced H3K9me2 in disease enhance binding of NFκB and AP-1 (activator protein-1) transcription factors at specific inflammation-responsive genes to augment proinflammatory stimuli in VSMC. Therefore, H3K9me2-regulation could be targeted clinically to limit expression of MMPs and IL6, which are induced in vascular disease.


Subject(s)
Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Demethylation , Gene Expression , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Humans , Inflammation/metabolism , Interleukin-6/metabolism , Male , Matrix Metalloproteinases/metabolism , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Transcription Factor AP-1/metabolism
7.
Cardiovasc Res ; 114(10): 1372-1384, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29635288

ABSTRACT

Aims: Obesity during pregnancy increases risk of cardiovascular disease (CVD) in the offspring and individuals exposed to over-nutrition during fetal life are likely to be exposed to a calorie-rich environment postnatally. Here, we established the consequences of combined exposure to a maternal and post-weaning obesogenic diet on offspring cardiac structure and function using an established mouse model of maternal diet-induced obesity. Methods and results: The impact of the maternal and postnatal environment on the offspring metabolic profile, arterial blood pressure, cardiac structure, and function was assessed in 8-week-old C57BL/6 male mice. Measurement of cardiomyocyte cell area, the transcriptional re-activation of cardiac fetal genes as well as genes involved in the regulation of contractile function and matrix remodelling in the adult heart were determined as potential mediators of effects on cardiac function. In the adult offspring: a post-weaning obesogenic diet coupled with exposure to maternal obesity increased serum insulin (P < 0.0001) and leptin levels (P < 0.0001); maternal obesity (P = 0.001) and a post-weaning obesogenic diet (P = 0.002) increased absolute heart weight; maternal obesity (P = 0.01) and offspring obesity (P = 0.01) caused cardiac dysfunction but effects were not additive; cardiac dysfunction resulting from maternal obesity was associated with re-expression of cardiac fetal genes (Myh7: Myh6 ratio; P = 0.0004), however, these genes were not affected by offspring diet; maternal obesity (P = 0.02); and offspring obesity (P = 0.05) caused hypertension and effects were additive. Conclusions: Maternal diet-induced obesity and offspring obesity independently promote cardiac dysfunction and hypertension in adult male progeny. Exposure to maternal obesity alone programmed cardiac dysfunction, associated with hallmarks of pathological left ventricular hypertrophy, including increased cardiomyocyte area, upregulation of fetal genes, and remodelling of cardiac structure. These data highlight that the perinatal period is just as important as adult-onset obesity in predicting CVD risk. Therefore, early developmental periods are key intervention windows to reduce the prevalence of CVD.


Subject(s)
Animal Nutritional Physiological Phenomena , Heart Diseases/etiology , Maternal Nutritional Physiological Phenomena , Myocardial Contraction , Obesity/complications , Prenatal Exposure Delayed Effects , Ventricular Function, Left , Ventricular Remodeling , Age Factors , Animals , Disease Models, Animal , Female , Gestational Weight Gain , Heart Diseases/blood , Heart Diseases/pathology , Heart Diseases/physiopathology , Hypertension/etiology , Hypertension/physiopathology , Male , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Nutritional Status , Obesity/blood , Obesity/physiopathology , Pregnancy
8.
Sci Rep ; 7: 44650, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28291256

ABSTRACT

The prevalence of obesity during pregnancy continues to increase at alarming rates. This is concerning as in addition to immediate impacts on maternal wellbeing, obesity during pregnancy has detrimental effects on the long-term health of the offspring through non-genetic mechanisms. A major knowledge gap limiting our capacity to develop intervention strategies is the lack of understanding of the factors in the obese mother that mediate these epigenetic effects on the offspring. We used a mouse model of maternal-diet induced obesity to define predictive correlations between maternal factors and offspring insulin resistance. Maternal hyperinsulinemia (independent of maternal body weight and composition) strongly associated with offspring insulin resistance. To test causality, we implemented an exercise intervention that improved maternal insulin sensitivity without changing maternal body weight or composition. This maternal intervention prevented excess placental lipid deposition and hypoxia (independent of sex) and insulin resistance in male offspring. We conclude that hyperinsulinemia is a key programming factor and therefore an important interventional target during obese pregnancy, and propose moderate exercise as a promising strategy to improve metabolic outcome in both the obese mother and her offspring.


Subject(s)
Hyperinsulinism/metabolism , Hypoxia/metabolism , Obesity/metabolism , Physical Conditioning, Animal , Placenta/metabolism , Animals , Blood Glucose/metabolism , Cholesterol/blood , Diet, High-Fat/adverse effects , Female , Glucose Tolerance Test , Hyperinsulinism/etiology , Hyperinsulinism/physiopathology , Hyperinsulinism/therapy , Hypoxia/physiopathology , Hypoxia/therapy , Insulin/blood , Insulin Resistance , Leptin/metabolism , Lipid Metabolism , Male , Mice , Obesity/etiology , Obesity/physiopathology , Obesity/therapy , Placenta/physiopathology , Pregnancy , Triglycerides/blood
9.
Sci Rep ; 7: 44949, 2017 03 24.
Article in English | MEDLINE | ID: mdl-28338072

ABSTRACT

Previous studies have shown that maternal diet-induced obesity leads to increased risk of type 2 diabetes in offspring. The current study investigated if weaning onto an obesogenic diet exaggerated the detrimental effects of maternal diet-induced obesity in adipose tissue. Maternal obesity and offspring obesity led to reduced expression of key insulin signalling proteins, including insulin receptor substrate-1 (IRS-1). The effects of maternal obesity and offspring obesity were, generally, independent and additive. Irs1 mRNA levels were similar between all four groups of offspring, suggesting that in both cases post-transcriptional regulation was involved. Maternal diet-induced obesity increased miR-126 expression however levels of this miR were not influenced by a post-weaning obesogenic diet. In contrast, a post-weaning obesogenic diet was associated with increased levels of suppressor of cytokine signaling-1, implicating increased degradation of IRS-1 as an underlying mechanism. Our results suggest that whilst programmed reductions in IRS-1 are associated with increased levels of miR-126 and consequently reduced translation of Irs1 mRNA, the effects of a post-weaning obesogenic diet on IRS-1 are mediated by miR-126 independent mechanisms, including increased IRS-1 protein degradation. These divergent mechanisms explain why the combination of maternal obesity and offspring obesity leads to the most pronounced effects on offspring metabolism.


Subject(s)
Adipose Tissue/metabolism , Insulin/metabolism , Obesity/etiology , Obesity/metabolism , Prenatal Exposure Delayed Effects , Signal Transduction , Adipocytes/cytology , Adipocytes/metabolism , Adipose Tissue/cytology , Cell Size , Diet, High-Fat , Female , Gene Expression , Humans , MicroRNAs/genetics , Pregnancy , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Weaning
10.
J Clin Invest ; 127(1): 335-348, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27893464

ABSTRACT

Cardiac hypertrophic growth in response to pathological cues is associated with reexpression of fetal genes and decreased cardiac function and is often a precursor to heart failure. In contrast, physiologically induced hypertrophy is adaptive, resulting in improved cardiac function. The processes that selectively induce these hypertrophic states are poorly understood. Here, we have profiled 2 repressive epigenetic marks, H3K9me2 and H3K27me3, which are involved in stable cellular differentiation, specifically in cardiomyocytes from physiologically and pathologically hypertrophied rat hearts, and correlated these marks with their associated transcriptomes. This analysis revealed the pervasive loss of euchromatic H3K9me2 as a conserved feature of pathological hypertrophy that was associated with reexpression of fetal genes. In hypertrophy, H3K9me2 was reduced following a miR-217-mediated decrease in expression of the H3K9 dimethyltransferases EHMT1 and EHMT2 (EHMT1/2). miR-217-mediated, genetic, or pharmacological inactivation of EHMT1/2 was sufficient to promote pathological hypertrophy and fetal gene reexpression, while suppression of this pathway protected against pathological hypertrophy both in vitro and in mice. Thus, we have established a conserved mechanism involving a departure of the cardiomyocyte epigenome from its adult cellular identity to a reprogrammed state that is accompanied by reexpression of fetal genes and pathological hypertrophy. These results suggest that targeting miR-217 and EHMT1/2 to prevent H3K9 methylation loss is a viable therapeutic approach for the treatment of heart disease.


Subject(s)
Cardiomegaly/enzymology , Cardiomegaly/prevention & control , Histone-Lysine N-Methyltransferase/metabolism , Animals , Cardiomegaly/genetics , Cardiomegaly/pathology , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/genetics , Male , Mice , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Rats , Rats, Sprague-Dawley
11.
Curr Opin Lipidol ; 27(5): 449-58, 2016 10.
Article in English | MEDLINE | ID: mdl-27495135

ABSTRACT

PURPOSE OF REVIEW: Here, we provide a summary of the current knowledge on the impact of early life nutrition on cardiovascular diseases that have emerged from studies in humans and experimental animal models. The involvement of epigenetic mechanisms in the Developmental Origins of Health and Disease will be discussed in relation to the implications for the heart and the cardiovascular system. RECENT FINDINGS: Environmental cues, such as parental diet and a suboptimal in utero environment can shape growth and development, causing long-lasting cardiometabolic perturbations. Increasing evidence suggest that these effects are mediated at the epigenomic level, and can be passed onto future generations. In the last decade, epigenetic mechanisms (DNA methylation, histone modifications) and RNA-based mechanisms (microRNAs, piRNAs, and tRNAs) have therefore emerged as potential candidates for mediating inheritance of cardiometabolic diseases. SUMMARY: The burden of obesity and associated cardiometabolic diseases is believed to arise through interaction between an individual's genetics and the environment. Moreover, the risk of developing poor cardiometabolic health in adulthood is defined by early life exposure to pathological cues and can be inherited by future generations, initiating a vicious cycle of transmission of disease. Elucidating the molecular triggers of such a process will help tackle and prevent the uncontrolled rise in obesity and cardiometabolic disease.


Subject(s)
Cardiovascular Diseases/genetics , Epigenesis, Genetic , Nutritional Status , Animals , Cardiovascular Diseases/metabolism , Diet , Histones/metabolism , Humans , RNA, Small Untranslated/genetics
12.
Science ; 353(6298): 495-8, 2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27386920

ABSTRACT

A suboptimal early-life environment, due to poor nutrition or stress during pregnancy, can influence lifelong phenotypes in the progeny. Epigenetic factors are thought to be key mediators of these effects. We show that protein restriction in mice from conception until weaning induces a linear correlation between growth restriction and DNA methylation at ribosomal DNA (rDNA). This epigenetic response remains into adulthood and is restricted to rDNA copies associated with a specific genetic variant within the promoter. Related effects are also found in models of maternal high-fat or obesogenic diets. Our work identifies environmentally induced epigenetic dynamics that are dependent on underlying genetic variation and establishes rDNA as a genomic target of nutritional insults.


Subject(s)
DNA, Ribosomal/genetics , Epigenesis, Genetic , Gene-Environment Interaction , Maternal Nutritional Physiological Phenomena , Nutritional Status , Animals , DNA Methylation , Diet, High-Fat , Diet, Protein-Restricted , Female , Genetic Variation , Male , Mice , Obesity/genetics , Pregnancy , Promoter Regions, Genetic , Weaning
13.
Trends Endocrinol Metab ; 27(6): 349-350, 2016 06.
Article in English | MEDLINE | ID: mdl-27091491

ABSTRACT

Obesity and its related metabolic comorbidities can be inherited across generations through non-genetic mechanisms. In a recent report, Huypens et al., using an in vitro fertilization approach, provide evidence that exposure to a high-fat diet modifies egg and sperm epigenetic information, rendering the progeny more prone to obesity.


Subject(s)
Diet, High-Fat/adverse effects , Epigenesis, Genetic/genetics , Obesity/genetics , Female , Humans , Male , Maternal Exposure/adverse effects , Obesity/etiology , Paternal Exposure/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...